
Introduction to 61B, Java
Lecture 1

1

CS61B, Spring 2024 @ UC Berkeley
Lecturers: Peyrin Kao, Justin Yokota
Slides Credit: Josh Hug

Course website: https://sp24.datastructur.es

Ask your questions in the Zoom chat! (link on website)

https://sp24.datastructur.es

• Welcome!
• Welcome to 61B
• 61B Logistics

• Our First Java Programs
• Hello World
• Hello Numbers
• Larger
• Reflections on Java
• Object-Oriented Programming

• HW0: Due Friday!
• Bonus Slides: Workflow

• Compilation
• IntelliJ

2

Welcome to 61B
Lecture 1, CS61B, Spring 2024

61B Overview

What is 61B about?
● Writing code that runs efficiently.

○ Good algorithms.
○ Good data structures.

● Writing code efficiently.
○ Designing, building, testing, and debugging large programs.
○ Use of programming tools.

■ git, IntelliJ, JUnit, and various command line tools.
○ Java (not the focus of the course!)

Assumes solid foundation in programming fundamentals, including:
● Object oriented programming, recursion, lists, and trees.

Why 61B?

Other great features of 61B:
● The most popular topics for job interview questions in software engineering.

○ Examples: Hash tables, binary search trees, quick sort, graphs, Dijkstra’s algorithm.
● Some really cool math. Examples:

○ Asymptotic analysis.
○ Resizing arrays.
○ The isometry between self-balancing 2-3 trees and self-balancing red black trees.
○ Graph theory.
○ P=NP.

● Once you’re done: the confident sense that you can build any software.

Question for You

What do you hope / expect to learn from this class? Why are you taking it?
● Job. $$$$$$$
● I want to be able to run my code efficiently (finally)
● I want an A.
● Coding from scratch.
● Greater grasp of data structures and algorithms

Who are you?
● Freshman? Sophomore? Junior? Senior? Grad student? None of the above?
● CS Major? Intending to be a CS Major? Something else?
● CS 61A? Java experience?

• Welcome!
• Welcome to 61B
• 61B Logistics

• Our First Java Programs
• Hello World
• Hello Numbers
• Larger
• Reflections on Java
• Object-Oriented Programming

• HW0: Due Friday!
• Bonus Slides: Workflow

• Compilation
• IntelliJ

6

61B Logistics
Lecture 1, CS61B, Spring 2024

Lectures provide you with an introduction and a foundation.

You’ll learn most of what you learn in the class by:
● Programming (labs, hws, projects, discussion section).
● Solving interesting problems (study guides, HW3, HW4 old exam problems, discussion

section).

Course Components

Four types of points in this class:
● Low effort, everyone should get them: Weekly Surveys, Course Evaluations

○ Median score is 100%
● High effort, everyone should get them: HW, Project, Lab

○ Median score is 100%
● High effort, not everyone gets them: Exams

○ Mean score is 65%
○ Final exam score can replace midterms if you have a bad midterm (or two).

● Pacing points: Attending Discussion, Lab, and keeping up with Lecture
○ Small amount of extra credit for keeping up with class.
○ Will not increase your score beyond 75% (B-).

■ Example: You have 740 points and earn 20 pacing points, you get 750 points.
● B to B+ threshold is 65% on exams, 95% on everything else.

Full details around point distributions, letter grade assignments, grade replacement, etc. are
on the website.

Evaluation

The deadlines in this class are the day by which assignments should be completed.
● They’ve been calibrated carefully against lecture, labs, discussions, and exams.
● In weeks 1 - 5, the timing is especially important!

There is no partial credit for work submitted late. Gradescope gives zero points by default
to late work.

To provide some flexibility, https://sp24.beacon.datastructur.es/ will allow you to request
extensions. These can be retroactive, but we recommend requesting in advance.
● Short extension (24 hours or less): Immediate approval by automated system.
● Long extension (24 - 72 hours): GSI will review within one business day.

If you have an emergency and need more than 72 hours, see syllabus.

Lateness Policies

https://sp24.beacon.datastructur.es/

Class Phase

This class is divided into three phases:
● Phase 1 (weeks 1 - 4): Intro to Java and Data Structures.

○ All coding work is solo.
○ Moves VERY fast.
○ HW0 (intro to Java) due Friday (in two days!)

● Phase 2 (weeks 5 - 10): Data Structures:
○ All coding work is solo.
○ Moves moderately fast.

● Phase 3 (weeks 12 - 14): Algorithms.
○ Coding work is entirely dedicated to final project, done in pairs.
○ Slower pace.

• Welcome!
• Welcome to 61B
• 61B Logistics

• Our First Java Programs
• Hello World
• Hello Numbers
• Larger
• Reflections on Java
• Object-Oriented Programming

• HW0: Due Friday!
• Bonus Slides: Workflow

• Compilation
• IntelliJ

11

Hello World
Lecture 1, CS61B, Spring 2024

Intro to Java

Let’s try writing some simple Java programs.
● First I’ll write them in Python (~99% of you have seen Python).
● Then I’ll write the equivalent Java program.

If you’ve only ever written code in MATLAB, this will be a little harder for you, but still
comprehensible.

This section might be a bit boring if you have Java experience.

(See video or code linked on course website)
Lecture code repository: https://github.com/Berkeley-CS61B/lectureCode-fa23

https://github.com/Berkeley-CS61B/lectureCode-fa23

Coding Demo: Hello World
hello.py

public class HelloWorld {
 public static void main(String[] args) {

 }
}

HelloWorld.java

Coding Demo: Hello World

print("hello world")

hello.py

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("hello world");
 }
}

HelloWorld.java

Java and Object Orientation

Reflections on Hello World:
● In Java, all code must be part of a class.
● Classes are defined with public class CLASSNAME
● We use { } to delineate the beginning and ending of things.
● We must end lines with a semicolon.
● The code we want to run must be inside public static void main(String[] args)

○ We'll learn what this means later.

Java is an object oriented language with strict requirements:
● Every Java file must contain a class declaration*.
● All code lives inside a class*, even helper functions, global constants, etc.
● To run a Java program, you typically define a main method using

public static void main(String[] args)

*: This is not completely true, e.g. we can also declare “interfaces” in .java files that may
contain code. We’ll cover these soon.

• Welcome!
• Welcome to 61B
• 61B Logistics

• Our First Java Programs
• Hello World
• Hello Numbers
• Larger
• Reflections on Java
• Object-Oriented Programming

• HW0: Due Friday!
• Bonus Slides: Workflow

• Compilation
• IntelliJ

16

Hello Numbers
Lecture 1, CS61B, Spring 2024

Coding Demo: Hello Numbers

x = 0;
while x < 10:
 print(x)
 x = x + 1

hellonumbers.py

public class HelloNumbers {
 public static void main(String[] args) {

 x = 0;
 while (x < 10) {
 System.out.println(x);
 x = x + 1;
 }

 }
}

HelloNumbers.java

Coding Demo: Hello Numbers

x = 0;
while x < 10:
 print(x)
 x = x + 1

hellonumbers.py

public class HelloNumbers {
 public static void main(String[] args) {
 int x;
 x = 0;
 while (x < 10) {
 System.out.println(x);
 x = x + 1;
 }

 }
}

HelloNumbers.java

Coding Demo: Hello Numbers

x = 0;
while x < 10:
 print(x)
 x = x + 1

hellonumbers.py

public class HelloNumbers {
 public static void main(String[] args) {

 int x = 0;
 while (x < 10) {
 System.out.println(x);
 x = x + 1;
 }

 }
}

HelloNumbers.java

Coding Demo: Hello Numbers

x = 0;
while x < 10:
 print(x)
 x = x + 1

x = "horse" # works
print(x)

hellonumbers.py

public class HelloNumbers {
 public static void main(String[] args) {

 int x = 0;
 while (x < 10) {
 System.out.println(x);
 x = x + 1;
 }
 x = "horse"; // doesn't work
 String x = "horse"; // doesn't work
 }
}

HelloNumbers.java

Coding Demo: Hello Numbers

x = 0;
while x < 10:
 print(x)
 x = x + 1

crashes here
print(5 + "horse")

hellonumbers.py

public class HelloNumbers {
 public static void main(String[] args) {

 int x = 0;
 while (x < 10) {
 System.out.println(x);
 x = x + 1;
 }

 x = "horse"; // program doesn't run
 }
}

HelloNumbers.java

Java and Static Typing

Reflections on Hello Numbers:
● Before Java variables can be used, they must be declared.
● Java variables must have a specific type.
● Java variable types can never change.
● Types are verified before the code even runs!

Java is statically typed!
● All variables, parameters, and methods must have a declared type.
● That type can never change.
● Expressions also have a type, e.g. “larger(5, 10) + 3” has type int.
● The compiler checks that all the types in your program are compatible before the

program ever runs!
○ e.g. String x = larger(5, 10) + 3 will fail to compile.
○ This is unlike a language like Python, where type checks are performed DURING

execution.

• Welcome!
• Welcome to 61B
• 61B Logistics

• Our First Java Programs
• Hello World
• Hello Numbers
• Larger
• Reflections on Java
• Object-Oriented Programming

• HW0: Due Friday!
• Bonus Slides: Workflow

• Compilation
• IntelliJ

23

Larger
Lecture 1, CS61B, Spring 2024

Coding Demo: Larger

def larger(x, y):
 if (x > y):
 return x
 return y

larger.py

public class LargerDemo {
 public static larger(x, y) {
 if (x > y) {
 return x;
 }
 return y;
 }

}

LargerDemo.java

Coding Demo: Larger

def larger(x, y):
 if (x > y):
 return x
 return y

larger.py

public class LargerDemo {
 public static int larger(int x, int y) {
 if (x > y) {
 return x;
 }
 return y;
 }

}

LargerDemo.java

Coding Demo: Larger

def larger(x, y):
 if (x > y):
 return x
 return y

print(larger(-5, 10))

larger.py

public class LargerDemo {
 public static int larger(int x, int y) {
 if (x > y) {
 return x;
 }
 return y;
 }

 public static void main(String[] args) {
 System.out.println(larger(-5, 10));
 }
}

LargerDemo.java

● Functions must be declared as part of a class in Java.
A function that is part of a class is called a "method."
So in Java, all functions are methods.

● To define a function in Java, we use "public static".
We will see alternate ways of defining functions later.

● All parameters of a function must have a declared type,
and the return value of the function must have a declared type.
Functions in Java return only one value!

Larger: Reflections

Coding Demo: Larger

/** Demonstrates creation of a method in Java. */
public class LargerDemo {
 /** Returns the larger of x and y. */
 public static int larger(int x, int y) {
 if (x > y) {
 return x;
 }
 return y;
 }

 public static void main(String[] args) {
 System.out.println(larger(-5, 10));
 }
}

LargerDemo.java

• Welcome!
• Welcome to 61B
• 61B Logistics

• Our First Java Programs
• Hello World
• Hello Numbers
• Larger
• Reflections on Java
• Object-Oriented Programming

• HW0: Due Friday!
• Bonus Slides: Workflow

• Compilation
• IntelliJ

29

Reflections on Java
Lecture 1, CS61B, Spring 2024

Compilation vs. Interpretation

In Java, compilation and interpretation are two separate steps.

Hello.java Hello.classjavac java
stuff
happens

Compiler Interpreter

Why make a class file at all?
● .class file has been type checked. Distributed code is safer.
● .class files are ‘simpler’ for machine to execute. Distributed code is faster.
● Minor benefit: Protects your intellectual property. No need to give out source.

Note: .class files are easily reversible into similar looking Java files.

You can learn more about all this in 61C and particularly 164.

Reflections on Static Typing

The Good:
● Catches certain types of errors, making it easier on the programmer to debug their

code.
● Type errors can (almost) never occur on end user’s computer.
● Makes it easier to read and reason about code.
● Code can run more efficiently, e.g. no need to do expensive runtime type checks.

The Bad:
● Code is more verbose.
● Code is less general, e.g. would need a second larger function to compare

non-integers like 5.5.

• Welcome!
• Welcome to 61B
• 61B Logistics

• Our First Java Programs
• Hello World
• Hello Numbers
• Larger
• Reflections on Java
• Object-Oriented Programming

• HW0: Due Friday!
• Bonus Slides: Workflow

• Compilation
• IntelliJ

32

Object-Oriented
Programming
Lecture 1, CS61B, Spring 2024

CS61A Review: Object-Oriented Programming

● A model for organizing programs
○ Modularity: Define each piece without worrying about other pieces, and they all

work together
○ Allows for data abstraction: You can interact with an object without knowing how

it's implemented
● Objects

○ An object bundles together information and related behavior
○ Each object has its own local state
○ Several objects may all be instances of a common type

● Classes
○ A class serves as a template for all of its instances
○ Each object is an instance of some class

CS61A Review: Constructors

public class Car {
 public String model;
 public int gas;

 public Car(String m) {
 model = m;
 gas = 5;
 }
}

● Constructors: A special method that creates a new object
(in other words, a new instance of the class)
○ In Python: __init__
○ In Java: Same name as the class

● Can take in additional arguments (in the example, m)
● Can be used to initialize instance variables (local state) for the new object
● In Java: We also have to declare instance variables before using them

class Car:

 def __init__(self, m):
 self.model = m
 self.gas = 5

Car.java car.py

CS61A Review: Methods

public class Car {
 public void drive() {
 if (gas < 5) {
 System.out.println("Cannot drive!");
 return;
 }
 gas -= 5;
 System.out.println(model + " goes vroom!");
 }

 public int gasLeft() {
 return gas;
 }

 public void addGas(int amount) {
 gas = gas + amount;
 }
}

● Calling a method on an object might change its state
● The object knows how to manage its own state, based on method calls
● In Java: The return value of the method must have a type

class Car:
 def drive(self):
 if (gas < 5):
 print("Cannot drive!")
 return

 gas -= 5
 print(self.model + " goes vroom!")

 def gasLeft(self):
 return self.gas

 def addGas(self, amount):
 gas = gas + amount

Car.java car.py

Java Syntax: this Keyword

public int gasLeft() {
 return gas;
}

● The this keyword can be used to access the current object's instance variables or methods
● Unlike Python, where self is mandatory, using this is not mandatory (as long as variable

names are unique)
● More details here

Car.java

public int gasLeft() {
 return this.gas;
}

Car.java

These two methods work exactly the same.

https://docs.google.com/presentation/d/1kOdhZSeCUSUwX8VwF8xNuFyXqp9OR8sfN2ZZWNxiCUU/edit#slide=id.g15ae7c5d36e_0_9

Object-Oriented Programming Demo: Car

public class Car {
 public String model;
 public int gas;

 public Car(String m) {
 model = m;
 gas = 5;
 }

 public void drive() {
 if (gas < 5) {
 System.out.println("Cannot drive!");
 return;
 }
 gas -= 5;
 System.out.println(model + " goes vroom!");
 }

 public int gasLeft() {
 return gas;
 }

 public void addGas(int amount) {
 gas = gas + amount;
 }
}

class Car:

 def __init__(self, m):
 self.model = m
 self.gas = 10

 def drive(self):
 if (gas < 5):
 print("Cannot drive!")
 return

 gas -= 5
 print(self.model + " goes vroom!")

 def gasLeft(self):
 return self.gas

 def addGas(self, amount):
 gas = gas + amount

Car.java car.py

c1 = Car("Honda Civic")
c2 = Car("Model T")

CS61A Review: Creating Objects

● In Java:
○ We have to declare the variables of type Car before using them
○ The new keyword instantiates a new object
○ We call the constructor to create the object

public static void main(String[] args) {
 Car c1;
 Car c2;

 c1 = new Car("Honda Civic");
 c2 = new Car("Model T");
}

Car.java car.py

CS61A Review: Accessing Objects

● Use dot notation to access methods of an object

public static void main(String[] args) {
 ...
 System.out.println(c1.gasLeft()); // 5

 c1.drive(); // Honda Civic goes vroom
 System.out.println(c1.gasLeft()); // 0

 c1.addGas(1);
 System.out.println(c1.gasLeft()); // 1

 c1.drive(); // Cannot drive

 System.out.println(c2.gasLeft()); // 5
}

...
print(c1.gasLeft()) # 5

c1.drive() # Honda Civic goes vroom
print(c1.gasLeft()) # 0

c1.addGas(1)
print(c1.gasLeft()) # 1

c1.drive() # Cannot drive

print(c2.gasLeft()) # 5

Car.java car.py

Object-Oriented Programming Demo: Car

public static void main(String[] args) {
 Car c1;
 Car c2;

 c1 = new Car("Honda Civic");
 c2 = new Car("Model T");

 System.out.println(c1.gasLeft()); // 5

 c1.drive(); // Honda Civic goes vroom
 System.out.println(c1.gasLeft()); // 0

 c1.addGas(1);
 System.out.println(c1.gasLeft()); // 1

 c1.drive(); // Cannot drive

 System.out.println(c2.gasLeft()); // 5
}

c1 = Car("Honda Civic")
c2 = Car("Model T")

print(c1.gasLeft()) # 5

c1.drive() # Honda Civic goes vroom
print(c1.gasLeft()) # 0

c1.addGas(1)
print(c1.gasLeft()) # 1

c1.drive() # Cannot drive

print(c2.gasLeft()) # 5

Car.java car.py

41

• Welcome!
• Welcome to 61B
• 61B Logistics

• Our First Java Programs
• Hello World
• Hello Numbers
• Larger
• Reflections on Java
• Object-Oriented Programming

• HW0: Due Friday!
• Bonus Slides: Workflow

• Compilation
• IntelliJ

HW0: Due Friday!
Lecture 1, CS61B, Spring 2024

I am not going to spend time in this class covering for loops, while loops, etc. in Java!
● You’ve seen this all before in some other language.

HW0 is out, and is due this Friday!
● We show you how to translate various Python constructs into Java, you write some

short programs.
○ If you haven’t seen Python before, you’ll be fine.

● Not required to use IntelliJ for HW0 since IntelliJ setup isn’t until lab 1.

If you can, start lab 1 early! Most of it is just downloading and installing software.

Time to Go Learn Java Basics!

Post-Lecture Q&A

If you have questions, come find us in Dwinelle 104!
We have to clear out of the lecture hall for the next class.

44

• Welcome!
• Welcome to 61B
• 61B Logistics

• Our First Java Programs
• Hello World
• Hello Numbers
• Larger
• Reflections on Java
• Object-Oriented Programming

• HW0: Due Friday!
• Bonus Slides: Workflow

• Compilation
• IntelliJ

Bonus Slides:
Compilation
Lecture 1, CS61B, Spring 2024

We won't cover these slides live in class,
and they won't be tested on exams. Check
out the videos in the playlist if you're
interested.

https://www.youtube.com/watch?v=Y2vC_SW00TE&list=PLnp31xXvnfRq5wRDN8wZFy7GrrJXUtr1q&index=8

Demo: Compilation in Terminal

jug ~/.../intro1
$ ls
HelloWorld.java

$ javac HelloWorld.java

$ ls
HelloWorld.class HelloWorld.java

$ java HelloWorld
Hello World!

46

• Welcome!
• Welcome to 61B
• 61B Logistics

• Our First Java Programs
• Hello World
• Hello Numbers
• Larger
• Reflections on Java
• Object-Oriented Programming

• HW0: Due Friday!
• Bonus Slides: Workflow

• Compilation
• IntelliJ

Bonus Slides:
IntelliJ
Lecture 1, CS61B, Spring 2024

We won't cover these slides live in class,
and they won't be tested on exams. Check
out the videos in the playlist if you're
interested.

https://www.youtube.com/watch?v=Y2vC_SW00TE&list=PLnp31xXvnfRq5wRDN8wZFy7GrrJXUtr1q&index=8

There are many different workflows for writing programs.

● Text editor + command line: (CS61A, CS88). We just did this.
○ Text editor: Writing your code.
○ Command line: Running your code.

● Jupyter Notebooks: (Data 8)
○ Write and run code in the same environment.

● Integrated Development Environment (IDE): (E7, 61B)
○ Write code and run code in the same environment.
○ Tons of additional features like a debugger, code autocomplete, continuous syntax

checking, decompilation (from .class to .java), etc.

Let’s see what our programs look like in the IDE for our course.

Example Workflows

IntelliJ Screenshot

Example feature: IntelliJ automatically and continuously detects syntax errors.

Admonition

Our expectation is that everyone in this class is using IntelliJ.
● It is not strictly required, but staff will provide no support for other tools or workflows.

